Article URL: https://researchpubjournals.org/?post=1414

Proposal for evaluation of prevalence of infection comorbidities among individuals living with type 2 diabetes mellitus at General Hospitals in Bayelsa State Nigeria

Ogbara CN., 1,2 Uwaka EO, 1,3 Otutu MO,1 Nwose EU1,4

¹Public & Community Health, Novena University Ogume, Delta State, Nigeria.

²Department of Public Health, Bayelsa State Ministry of Health, Yenagoa, Nigeria.

³Director of Medical Services Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria.

ORCHID ID: 0009-0008-9189-0534

⁴School of Health & Medical Sciences, University of Southern Queensland. Toowoomba Australia

Correspondence: Ogbara CN. Department of Public Health, Bayelsa State Ministry of Health, Yenagoa, Bayelsa State, Nigeria. E: oogbara30@gmail.com; T: +2348033798731.

Received: 09/04/2024

Revised: 25/07/2025

Accepted: 16/09/2025

Published: 23/09/2025

Article URL: https://researchpubjournals.org/?post=1414

Abstract

Background: Type 2 diabetes mellitus (T2DM) is a preventable public health concern including infectious disease complications. In Bayelsa State Nigeria, there is dearth of

knowledge regarding the relationship between T2DM and infections comorbidities, especially

the types of infectious microbes commonly observed, risk factors, and the management

practices.

Objective: This study is aimed to evaluate the prevalence of infection co-morbidities among

individuals living with T2DM in General Hospitals in the eight (8) Local Government Areas

of Bayelsa State.

Method: This was designed to follow a mixed-methods approach including cross-sectional

clinical audit and surveys. Seven general hospitals and one cottage hospital in Bayelsa State

constituted the performance sites for clinical audit. The surveys would include patients and

healthcare professionals within the chosen health facilities. The choice to use the General

Hospitals is based on previous study area being convenience sampling at hospitals.

Expected results: The study would provide answers to questions around burden of T2DM,

prevalence of infection comorbidities and the spectrum of infections. Other expectations

include provision of information about potential risk factors diabetes infections and healthcare

management practices

Conclusion: This significance of the study proposal lies in potential for improved care for

diabetes infections. Knowledge of the spectrum of infections may highlight areas for public

health awareness and primary healthcare development in diabetes care.

Keywords: prevalence of infection, general hospitals, infectious diseases, management

practice, preventive measures, risk factors.

68

Article URL: https://researchpubjournals.org/?post=1414

1. 0. Introduction

1.1. Synopsis of the literature

Diabetes mellitus (DM) as a disease is a clinical syndrome associated deficiency of insulin action. It is considered as one of the highest health threats in our society. DM increases the susceptibility of such patients to infectious diseases due to of presence hyperglycemic a environment that favors immune dysfunction. DM is a chronic and complex metabolic disease that is characterized by several manifestations, including but not limited to increased susceptibility to infectious disease as complications (Chávez-Reyes et al., 2021).

Zhou and Lansang (2024) also pointed that diabetes is a disease that has to do with a significant risk factor for several types of infections that can lead to hospitalization of a patient. This situation normally occurs due to the immune system dysfunction. Skin, soft tissue, respiratory, genito-urinary and gastrointestinal infections appear to affect people with DM more often.

DM is one of topmost four non-communicable disease (NCD) killers besides cancer, cardiovascular disease, and respiratory diseases. However, while mortality in other three diseases have declined between 2000 and 2019, diabetes death increased by 3% (World Health

Organization, 2023). However, infectious diseases involving the bacteria and viruses joined the NCDs to constitute top 10 leading causes of mortality in the 2021 global health statistics (World Health Organization, 2024).

It has been established that individuals with T2DM are at a higher risk for developing certain infections such as COVID tuberculosis (Carey et al., 2023; Chávez-Reves et al., 2021; Holt et al., 2024; Marhl et al., 2020; Tenconi et al., 2007), and insulin or glycaemia indicated to be main biomolecular determinants (Chávez-Reyes et al., 2021; Sun, 2023). Although, genetics indicated to play some role (Adeghate et al., 2006; Qin et al., 2012), environmental factors remain critical. It is known that nonadherence to good DSM practices is crucial (Colberg et al., 2016); and environmental pollution is yet another factor (Rao et al., 2015). Hence, health education constitutes an important aspect of DM health service management regimen (Khunti et al., 2012; Venmans et al., 2011).

1.2 Statement of Problem

While it is known that persons with DM have over 150% greater risk of infection (Holt et al., 2024; Kim et al., 2019), the prevalence of infectious spectra in the diabetes population is limited. A quick review on PubMed shows only three papers

Article URL: https://researchpubjournals.org/?post=1414

(Abu-Ashour et al., 2018; Carey et al., 2018; Kim et al., 2019), none of which is from Nigeria. A further quick scoping review for literatures about diabetes in Nigeria yields thousands of articles. However, limiting focus to Bayelsa State shows only three papers (Dambo et al., 2024; Kasia et al., 2020; Okoro & Jumbo, 2021), but all three studies were limited scope of prevalence of DM i.e. none extended to include infections. It is of interest to investigate the spectrum of infectious agents within the same population. Further, while fungal infection has been reported to be prevalent in nearby state of Enugu Nigeria (Udeani et al., 2018), the prevalences of fungal and viral infections among individuals living with T2DM in Bayelsa State are unknown.

1.3 Aims and Objective

The primary aim of this study is to evaluate the prevalence of infection comorbidities among individuals living with T2DM, as well as infectious disease management practices in Bayelsa State.

1.4. Specific objectives

- To determine the prevalence of T2DM in the study population.
- To identify the common comorbid infections associated with T2DM in Bayelsa State

- 3. To determine the prevalence of common comorbid infections among T2DM patients.
- 4. To identify risk factors for common comorbid infections among T2DM patients.
- 5. To ascertain the management practices of common comorbid infections among T2DM patients.

1.5. Research Questions and hypothesis

These are as tabulated (Table 1)

2. 0. Methods

2.1. Study design:

The design for this study is sequential mixed methods research. This design combines qualitative (interview) as an addition to provide nuance to quantitative (Creswell & Hirose. data 2019; Onwuegbuzie & Collins, 2007). To test hypothesis, comparative method would be adopted (He et al., 2024). The study is also designed to be cross-sectional observational method similar as surveillance approach (Bell Ngan et al., 2020). Furthermore, the identified clinical data from the hospitals would constitute secondar0y data to enable a retrospective review and case analysis (He et al., 2024)

2.3. Study population

The targeted population of this study involves all T2DM patients attending the general hospitals and one cottage hospital

Article URL: https://researchpubjournals.org/?post=1414

(cottage hospital Ekeremor) in Bayelsa State is 116,247.

2.4. Selection criteria

2.4.1. Inclusion Criteria: Men and Women who are diabetic (both type 1 and type 2) between 1st July, 2024 to 31st December, 2024.

2.4.2. Exclusion Criteria: Men and Women who are not diabetic (both type 1 and type 2) before 1st July, 2024 and after 31st December, 2024.

2.5. Sampling method

The sampling procedure for this study will be purposive method, because recruitment of volunteer participants would be based on those present during the research period. The proposal intended to work with a round-up total number of 400 participants including hospital records. Questionnaires will be given to patients; medical personnel's attending to diabetes patients to fill and identify the determinant factors etc that could cause infections and the comorbidity infect ions associated with T2DM patients.

2.6. Sample size

The sample size for this study is all about T2DM patients in the study area and would be calculated according to Taro Yamane's formula for sample size determination for estimating proportion in a finite population (Blarinwa, 2020). Based on estimated

targeted population of 116,247, the online version of the formula was used to drive sample size of N=383.

2.7. Data collection

Medical records will be reviewed for 1. burden (objective epidemiology (objectives 2 - 4), and management practices (objective 5). The hospital records of the general hospitals would be accessed to elicit for demographic variables (Table 2). Survey questionnaires will administered to medical staff and DM patients to collect further data on other variables such as diabetic -related infections (bacterial, fungal and viral), risk factors of common comorbid infections and management practice for common comorbid infections that will be used for epidemiological evaluations. There is a standard recommended diabetes care plan (CDC, 2024), which will be used to collected the clinical data for assessment of objective 5. Demographic information will be as in a related study from another State (Udeani et al., 2018).

For respondents that are literate, they will be given the free will to respond to the instrument. But for those who could not read or write, the research assistant or the researcher will assist them by reading and explain each item in the questionnaire for

Article URL: https://researchpubjournals.org/?post=1414

them to respond. Their responses will be appropriately written or tick in the questionnaire allocated to them.

2.8. Statistical analysis

The data will be analyzed along the following research questions and hypothesis (see table 1). The questionnaires will be manually sorted out, entered a computer and the obtained data will be analyzed using IBM SPSS version 20. Descriptive analysis of all the variables measured will first be done, and the categorical variables will be reported as frequencies and proportions/percentages,

while the continuous variables will be reported as means \pm standard deviation. Cross-tabulations will be done to test for associations between the different categorical variables (in line with the objective of the study) using the chi-square test. Fisher's exact test will be used where the expected value is less than 5. Mixed regression models will conducted to estimate the association between each of the common comorbid infections and T2DM and also for the association between infection control methods and T2DM management practices.

Table 1: Research questions and hypotheses matching specific objectives

SN	Research questions	Null hypothesis. No significant differences in:	
1	What is the prevalence of T2DM among diabetic patients in Bayelsa State?	Gender and stratified age groups	
2	What are the common comorbid infections associated with T2DM patients in Bayelsa State?	Level of bacterial, fungal, and viral infections between DM	
3	What is the prevalence of the common comorbid infections among T2DM patients in Bayelsa State?	Proportions of various reported bacterial, fungal, and viral infections between stratified durations of T2DM	
4	What are the risk factors for common comorbid infections among T2DM patients in Bayelsa State?	Compare risk factors of common comorbid infections between T2DM and non-DM groups	
5	What are the management practices of common comorbid infections among T2DM patients in Bayelsa State?	In diagnostic requests for bacterial, fungal, and viral infections	

Key: SN – serial number for specific research objectives

Article URL: https://researchpubjournals.org/?post=1414

Table 2: Research objectives matching design and data proposal

SN	Research objectives: To determine	Study design
1	Burden of T2DM in the study population.	Cross-sectional descriptive
2	Infections associated with T2DM in Bayelsa State	Comparative
3	Prevalence of the identified infectious microbes.	Cross-sectional mixed-methods
4	Identify risk factors for infection comorbidities among T2DM patients.	Comparative
5	Management practice of infection comorbidity in T2DM patients	Cross-sectional mixed-methods

Key: SN – serial number for specific research objectives

3. 0. Scope and limitations of Study

3.1. Scope: The geographical scope of this study is Bayelsa State, and it will be conducted in seven (7) general hospitals including one cottage hospital in the eight (8) LGAs of Bayelsa State Nigeria. The study will focus on T2DM patients by identifying common comorbid infections among them and determining prevalence these common comorbid infections among T2DM patients. It will explore the risk factors also that predisposes T2DM patients to these common comorbid infections.

3.2. Limitations of study using SWOT analysis: To understand the research findings a SWOT analysis was conducted to identify the strengths, weaknesses, opportunities, and threats of this study.

Strength: will be its relevance and importance to public health. The outcome of this research will improve infection control and management thereby reducing

complications among T2DM patients. The study findings can also influence clinical practice, preventive measures, and patient's education which will improve health outcome both at individual and community level.

Weakness: This will include resource constraints in terms of cost of executing the research and time in collecting/ reviewing medical records. Logistic and technical challenges in accessing a large pool of volunteers is also another weakness to be acknowledged.

Opportunity: It will aid collaboration with other health professional, open-up dissemination channels for sharing research findings, a platform for further studies on the subject matter, and opportunities for sponsorships that can enhance the project scope. Research findings can also lead to improved public health policies preventive measures and treatment

Article URL: https://researchpubjournals.org/?post=1414

guidelines for common comorbid infections within the diabetic population.

Threat: This is self-funded research, which constitutes limitation to engagement of supporting personnel for the work. Ethical and privacy concerns constitute a threat as it has been known that assessment of lifestyle can be difficult (Ene-Obong et al., 2013), just as incomplete documentation in medical records also constitute another challenge (Gbeinbo et al., 2023; Nwose et al., 2019).

4.0. Expected outcome/results

4.1. Expected outcome: It will contribute to the knowledge of the general public on better ways to manage T2DM. It will create awareness on what symptoms to look out for when it has to do with common T2DM comorbid infections. It will be a guide to researcher and policy makers when handling non- communicable disease issues.

4.2 Expected results: 6 points

1. High prevalence of infection comorbidities: the study may reveal a high prevalence of infection comorbidity among T2DM patients in the study population, Identify potential risk factors and demographical characteristics associated with T2DM in these

- groups, and inform the development of targeted interventions and public health strategies to prevent and manage T2DM in the vulnerable population in Bayelsa State.
- 2. Identification of common comorbid infections: The study may identify the most common types of infections among T2DM patients such as: urinary tract infection (UTIs), skin infections (e.g., cellulitis, diabetes foot ulcer), respiratory tract infection (pneumonia), and gastrointestinal infections.
- 3. This study may find association between common comorbid infections and demographic/clinical factors such as age, duration of T2DM e.t.c, which can increase the risk of infection comorbidity, and poor glycaemia control which may also predispose to a high risk of infection comorbidity.
- 4. Will provide a comprehensive understanding of the current management practices and strategies employed by healthcare providers in managing infection comorbidity in patients with T2DM.

Article URL: https://researchpubjournals.org/?post=1414

Identify gapes and challenges in the existing management practices, and to enhance effective management of infection co-morbidity in T2DM patients so as to improve health outcome and quality of life.

5. The study's findings may highlight opportunities for targeted interventions to reduce the burden of infection comorbidity among T2DM patients, such as improved glycemic control. enhance infection preventive control measures, timely diagnosis and treatment of infections, patient education, and awareness program. These expected outcomes can inform healthcare strategies and interventions to improve patient outcomes and reduce the burden of infection comorbidity among T2DM patients in Bayelsa State.

4.3. Significance of expected findings:

It is known that the preventive medicine for infectious disease comorbidity in diabetes comprises both avoiding direct infections and reducing the risks of being infected (American Diabetes Association, 2022). This study will serve as a needs-assessment to enable government to improve on healthcare services geared towards reducing risks of infections. It will

provide update knowledge for diabetic patients on infection signs, symptoms and to know when to seek for help from a physician.

4.4. Justification of Study

Currently, T2DM is a dangerous non communicable disease, as its prevalence is continuously increasing in our society and accounts for about 422 million individuals living with it (Guangtone et al., 2019). Different literature reviews have shown the prevalence of diabetes mellitus in different geopolitical zones in Nigeria. Factors such as family history, urban dwelling, physical inactivity, advance age, and unhealthy diet are important risk factors among the individuals (Andrew et al., Humanity is continually being faced with emerging and re-emerging diseases. especially those of viral origin. The COVID-19 for instance has been reported to easily affect patients with underling illnesses, one of such is diabetes mellitus (DM). The understanding of this fact therefore forms an impetus for the current study.

5.0. Time frame

This research from initiation till its complete will take 30 months.

6.0. Ethical compliance

6.1. Ethical clearance:

Article URL: https://researchpubjournals.org/?post=1414

Approval for the research will be sought from the Research and Ethics committee of the Bayelsa State Ministry of Health, Bayelsa State Hospital Management Board and Novena University Ogume, Delta State.

6.2. Consent/confidentiality:

Informed consent will be obtained from each participant and confidentiality will be maintained at each stage in accordance with clinical principle for the guidance of physicians in medical research as stipulated in the Helsinki Declaration of 1964 as reviewed in the sixth edition of 2008 (Williams, 2008).

References

Abu-Ashour, W., Twells, L. K., Valcour, J. E., & Gamble, J. M. (2018). Diabetes and the occurrence of infection in primary care: a matched cohort study. BMC Infect Dis, 18(1), 67. https://doi.org/10.1186/s12879-018-2975-2

Adeghate, E., Schattner, P., & Dunn, E. (2006). An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci, 1084, 1-29.

https://doi.org/10.1196/annals.1372
.029

American Diabetes Association. (2022).

Standards of care in diabetes-2023
abridged for primary care
Providers. Clin Diabetes, 41(1), 431. https://doi.org/10.2337/cd23-as01

Bell Ngan, W., Essama Eno Belinga, L., Essam Nlo'o, A. S. P., Roche, F., Goethals, L., Mandengue, S. H., & Bongue, B. (2020). Surveillance of cardiovascular Risk factors in the Fifth Military Sector Health center, Ngaoundéré, Cameroon: observational study. JMIR Form Res, 4(11), e18567. https://doi.org/10.2196/18567

Carey, I. M., Critchley, J. A., Chaudhry, U. A. R., DeWilde, S., Limb, E. S., Cook, D. G., Whincup, P. H., & Harris, T. (2023). Evaluating ethnic variations in the risk of infections in people with prediabetes and type 2 diabetes: A matched cohort study. Diabetes Care, 46(6), 1209-1217. https://doi.org/10.2337/dc22-2394

Carey, I. M., Critchley, J. A., DeWilde, S., Harris, T., Hosking, F. J., & Cook, D. G. (2018). Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study. Diabetes

Article URL: https://researchpubjournals.org/?post=1414

Care, 41(3), 513-521. https://doi.org/10.2337/dc17-2131

- Casqueiro, J., Casqueiro, J., & Alves, C. (2012). Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab, 16 Suppl 1(Suppl1), S27-36. https://doi.org/10.4103/2230-8210.94253
- CDC. (2024, 15 May, 2024). Your diabetes care schedule. Retrieved 7th Mar, 2025 from https://www.cdc.gov/diabetes/treatment/your-diabetes-care-schedule.html
- Chávez-Reyes, J., Escárcega-González, C.
 E., Chavira-Suárez, E., León-Buitimea, A., Vázquez-León, P.,
 Morones-Ramírez, J. R., Villalón,
 C. M., Quintanar-Stephano, A., &
 Marichal-Cancino, B. A. (2021).
 Susceptibility for some infectious
 diseases in patients with diabetes:
 The key role of glycemia. Front
 Public Health, 9, 559595.
 https://doi.org/10.3389/fpubh.2021.559595
- Chen, M., Yun, Q., Lin, H., Liu, S., Liu, Y., Shi, Y., Ji, Y., & Chang, C. (2022). Factors related to diabetes self-management among patients with type 2 diabetes: A Chinese cross-

- sectional survey based on self-determination theory and social support theory. Patient Prefer Adherence, 16, 925-936. https://doi.org/10.2147/ppa.S33536
- Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Castorino, K., & Tate, D. F. (2016). Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care, 39(11), 2065-2079. https://doi.org/10.2337/dc16-1728
- Creswell, J. W., & Hirose, M. (2019).

 Mixed methods and survey research in family medicine and community health. Fam Med Community Health, 7(2), e000086.

 https://doi.org/10.1136/fmch-2018-000086
- Dambo, N. D., Jeremiah, I., Omietimi, J. E., Oyeyemi, N., Kasia, B. E., & Finomo, F. O. (2024). Gestational diabetes mellitus and feto-maternal outcomes in Federal Medical Centre, Yenagoa, Bayelsa State-A comparative study of two diagnostic criteria. Niger Med J, 65(6), 1037-1046.

Article URL: https://researchpubjournals.org/?post=1414

https://doi.org/10.60787/nmj.v65i6. 540

Ene-Obong, H. N., Sanusi, R. A., Udenta, E. A., Williams, I. O., Anigo, K. M., Chibuzo, E. C., Aliyu, H. M., Ekpe, O. O., & Davidson, G. I. (2013). Data collection and assessment of commonly consumed foods and recipes in six geo-political zones in Nigeria: important for the development of a National Food Composition Database and Dietary Assessment. Food Chem, 140(3), 539-546.

https://doi.org/10.1016/j.foodchem. 2013.01.102

Gbeinbo, F. D., Bwititi, P. T., & Nwose, E. U. (2023). Gestational diabetes screening and management: the issues of GDM risk factors and phone number documentations. Int J Sci Rep, 9(10), 309-313. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20232909

He, M., Ye, J., Zheng, W., Qiao, P., Gu, H., Qin, W., & He, X. (2024). The impact of gender differences on the clinical characteristics of critically ill patients with venous thromboembolism: A retrospective, observational study. Medicine (Baltimore), 103(24), e38423.

https://doi.org/10.1097/md.000000 0000038423

Holt, R. I. G., Cockram, C. S., Ma, R. C. W., & Luk, A. O. Y. (2024). Diabetes and infection: review of the epidemiology, mechanisms and principles of treatment. Diabetologia, 67(7), 1168-1180. https://doi.org/10.1007/s00125-024-06102-x

Kasia, B., Oyeyemi, A., Opubiri, I., & Azonobi, R. (2020). Prevalence and risk factors of diabetes mellitus and pre-diabetes in rural communities in Bayelsa State Nigeria. Niger Delta Medical Journal, 4(4), 13-23. https://ndmjournal.org/wp-content/uploads/2020/12/Prevalence-Risk-factors-of-diabetes.pdf

Khunti, K., Gray, L. J., Skinner, T., Carey, M. E., Realf, K., Dallosso, H., Fisher, H., Campbell, M., Heller, S., Davies. M. J. (2012).Effectiveness of a diabetes education and self management (DESMOND) programme people with newly diagnosed type 2 diabetes mellitus: three year followcluster randomised up of a controlled trial in primary care. BMJ, 344, e2333. https://doi.org/10.1136/bmj.e2333

Article URL: https://researchpubjournals.org/?post=1414

Kim, E. J., Ha, K. H., Kim, D. J., & Choi, Y. H. (2019). Diabetes and the risk of infection: A national cohort study. Diabetes Metab J, 43(6), 804-814.

https://doi.org/10.4093/dmj.2019.0 071

- Maina, P. M., Pienaar, M., & Reid, M. (2023). Self-management practices for preventing complications of type II diabetes mellitus in low and middle-income countries: A scoping review. Int J Nurs Stud Adv, 5, 100136. https://doi.org/10.1016/j.ijnsa.2023
 .100136
- Marhl, M., Grubelnik, V., Magdič, M., & Markovič, R. (2020). Diabetes and metabolic syndrome as risk factors for COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 671-677.

https://doi.org/10.1016/j.dsx.2020. 05.013

McNeill, L. H., Kreuter, M. W., & Subramanian, S. V. (2006). Social environment and physical activity: a review of concepts and evidence. Soc Sci Med, 63(4), 1011-1022. https://doi.org/10.1016/j.socscimed .2006.03.012

Nwose, E. U., Mogbusiaghan, M., Bwititi, P. T., Adoh, G., Agofure, O., & Igumbor, E. O. (2019). Barriers in determining prevalence of type 2 diabetes mellitus among postpartum GDM: The research and retraining needs of healthcare professionals. Diabetes Metab Syndr, 13(2019), 2533-2539.

https://doi.org/https://doi.org/10.10 16/j.dsx.2019.07.002

- Okoro, T. E., & Jumbo, J. (2021).

 Cardiovascular event risk estimation among residents of a rural setting in Bayelsa state,

 Nigeria. Am J Cardiovasc Dis,

 11(3), 300-315.
- Onwuegbuzie, A. J., & Collins, K. M. T. (2007). A typology of mixed methods sampling designs in social science research. The Qualitative Report, 12(2), 281-316. https://doi.org/10.46743/2160-3715/2007.1638

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., . . . Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes.

Article URL: https://researchpubjournals.org/?post=1414

Nature, 490(7418), 55-60. https://doi.org/10.1038/nature1145

Rao, X., Montresor-Lopez, J., Puett, R., Rajagopalan, S., & Brook, R. D. (2015). Ambient air pollution: an emerging risk factor for diabetes mellitus. Curr Diab Rep, 15(6), 603. https://doi.org/10.1007/s11892-015-0603-8

Sallis, J. F., Floyd, M. F., Rodríguez, D. A., & Saelens, B. E. (2012). Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation, 125(5), 729-737.

https://doi.org/10.1161/circulationa ha.110.969022

Schuetz, L. T., Duran, G., Baeten, P., Lintsen, D., Hermans, D., Chenine, S., Verreycken, J., Vanmierlo, T., Wouters, K., & Broux, B. (2024). Sex differentially affects inflammatory cell subsets in adipose tissue depots in a diet induced obesity model. Biol Sex Differ. 15(1), 105. https://doi.org/10.1186/s13293-024-00677-1

Sun, W. (2023). Insulin may promote SARS-CoV-2 cell entry and replication in diabetes patients. Med

Hypotheses, 170, 110997. https://doi.org/10.1016/j.mehy.202 2.110997

Tenconi, M. T., Devoti, G., Comelli, M., Pinon, M., Capocchiano, A., Calcaterra, V., & Pretti, G. (2007). Major childhood infectious diseases and other determinants associated with type 1 diabetes: a case-control study. Acta Diabetol, 44(1), 14-19. https://doi.org/10.1007/s00592-007-0235-9

Udeani, T. K., Asogwa, V. N., & Ezenwaka, U. (2018). Assessment of systemic fungal infections among diabetic patients in Enugu, Nigeria.

J Infect Dis Epidemiol, 4(2), 051.

https://doi.org/10.23937/2474-3658/1510051

Williams, J. R. (2008). The Declaration of Helsinki and public health. Bull World Health Organ, 86(8), 650-652. https://doi.org/10.2471/blt.08.050955

Venmans, L. M., Gorter, K. J., Hak, E., Grypdonck, M. H., de Bruijn, O., & Rutten, G. E. (2011). Management of infections in type 2 diabetes from the patient's perspective: a qualitative approach. Prim Care Diabetes, 5(1), 33-37.

Article URL: https://researchpubjournals.org/?post=1414

 $\underline{https://doi.org/10.1016/j.pcd.2010.}$

09.003

World Health Organization. (2023). World

health statistics 2023: monitoring

health for the SDGs, sustainable

development goals. Retrieved 5th

June 2024 from

https://www.who.int/publications/i/

item/9789240074323

World Health Organization. (2024). World

health statistics 2023: monitoring

health for the SDGs, sustainable

development goals.

https://iris.who.int/bitstream/handle

/10665/376869/9789240094703-

eng.pdf?sequence=1

Zhou, K., & Lansang, M. C. (2024).

Diabetes mellitus and

infection.Endotex.

https://www.ncbi.nlm.nih.gov/book

s/NBK569326/

Declarations

Conflict of interest: Nil.

Funding: Nil